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Abstract

We report on a search for electroweak single top—quark production with CDF II
data corresponding to 2.7 fb~! of integrated luminosity. We apply neural net-
works to construct discriminants that distinguish between single-top—quark and
background events. Two analyses are performed, assuming a top—quark mass of
175 GeV/ ¢?. In the first one, we combine ¢ and s—channel events to one single—
top signal under the assumption that the ratio of the two processes is given by the
standard model. Using ensemble tests we determine that we expect with a proba-
bility of 50% to see a single-top signal that is larger than a 5.1¢ fluctuation of the
background (p—value of 0.00000018). A binned likelihood fit to the data yields a
cross section of 2.14_'8:(75 pb for single top—quark production. The observed p—value
is 0.00006790 which corresponds to a significance of 3.8¢.

In the second analysis, we separate the two single top—quark production modes.
A binned likelihood fit done simultanously to a two—dimensional and three one—
dimensional distributions of neural network outputs yields most probable values for
the cross sections of 0.7J_r8:g pb for the t—channel and 2.1J_r8:; pb for the s—channel.
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0 Additions since Blessing of 2.7 fb™! result

Since the last blessing (CDF note 9107v1.6) we added the following points:

1. We add high-pr muon data coming from MET+jets trigger as discribed in CDF
note 9105. This new category of events will be calles Extended Muon Coverage
(EMC), opposite to the Trigger Lepton Coverage (TLC).

2. We add about 0.5 fb~! of data (p14 — p17). Figure 1 and 2 show the neural network
output distributions of the new observed events compared to the old observed events
in all 8 channels.
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Figure 1: Comparison of NN Output distributions of the new observed events in the 2 jet
1 tag channel for TLC leptons (a) and EMC leptons (b); and in the 2 jet 2 tag channel
for TLC leptons (c¢) and EMC leptons (d).
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Figure 2: Comparison of NN Output distributions of the new observed events in the 3 jet
1 tag channel for TLC leptons (a) and EMC leptons (b); and in the 3 jet 2 tag channel
for TLC leptons (c) and EMC leptons (d).



1 Introduction
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Figure 3: Single top—quark production channels: (a) t—channel at leading order, (b) t—
channel NLO including initial state gluon splitting, and (c) s—channel at leading order.
For antitop—quark production, the charge conjugate processes apply.

In this note, we document our analysis of CDF II data searching for electroweak pro-
duction of single top—quarks. The two relevant processes of single top—quark production
at the Tevatron are illustrated in figure 3. In this search, only leptonic W—boson decays
in events with exactly two or three tight jets are targeted as described in section 2. Since
a small signal must be extracted from a huge amount of background events, multivariate
methods are an appropriate approach, exploiting a large number of characteristic quan-
tities. In this analysis, neural networks are used to discriminate single-top—quark events
by employing the NeuroBayes® package [?, ?] introduced in section 3. The modeling of
the signal and background processes is described in section 4. In this section, a table with
the number of expected events is given as well. The training of the neural networks is
detailed in section 5. To measure the cross section of single top—quark production, sig-
nal and background templates of the neural network output are created from simulated
events, which are fitted to the output distribution of observed events.

For the search of single-top—quark events, two different approaches are taken. One is



to assume the ratio of the cross sections of both production channels to be as predicted
by the standard model. In this approach, the output distributions of t— and s—channel
events are combined into on single template. The other is to determine the cross sections
of both channels independently and simultaneously, named separate search.

We use the high—pr lepton trigger data up to pl3. The largest data sample (CEM
and CMUP) corresponds to an integrated luminosity of 2.7 fb™'. To exclude runs or run
sections where the CDF II detector was not fully operational, we apply the single-top
group version 19 of the good run list (bits 1141).

2 Requirements for Candidate Events

Lepton Identification After offline reconstruction, the lepton candidates have to pass
further cuts in order to improve the purity. For central electrons, a reconstructed track
with pr > 10 GeV/c has to match a cluster in the CEM with Ep > 20 GeV. Further-
more, Fyap/Erm < 0.055 4 0.00045 - E is required; the ratio of cluster energy to track
momentum F/p has to be smaller than 2.0 for track momenta < 50 GeV/c. Electron
candidates in forward direction are defined by a cluster in the PEM with Er > 20 GeV
and Fyap/Frm < 0.05. The cluster position and the primary vertex are combined to
form a search trajectory in the silicon tracker and seed the pattern recognition of the
tracking algorithm. For the electron candidate to pass the selection, the found track has
to fulfill certain quality criteria. Electron events are rejected, if an additional high—pr
track is found that forms a common vertex with the track of the electron candidate and
has a curvature of opposite sign. These events are likely to stem from the conversion of
a photon.

Muons are identified by requiring a COT track with pr > 20 GeV/c that extrapolates
to a track segment in a muon chamber. Signal muons have to be detected in the CMU and
CMP simultaneously or in the CMX. In order to minimize background contaminations
further requirements are imposed. The energy depositions in the electromagnetic and
hadronic calorimeters have to correspond to the expectation regarding minimum ionizing
particles. To reject cosmic muons or muons from in—flight decays of long—lived particles
(such as Kg, K1, or A), the impact parameter dy of the track must be small. Cosmic
muons are further rejected through their characteristic track timing and topology.

Furthermore, exactly one isolated lepton candidate is required, whereby a candidate
is considered isolated if the Et not assigned to the lepton in a cone of R = 0.4 centered
around the lepton is less than 10% of the lepton E1 or pr, respectively. This lepton is
called tight lepton.

A detailed description of all lepton requirements can be found in references [?, 7, ?].

Dilepton Veto To ensure that there is exactly one tight lepton, events are rejected
which have either an additional tight lepton or a loose lepton. Loose leptons are leptons
which pass all cuts except the isolation cut, or are identified in the CMP, CMU or BMU
solely.



Jet Reconstruction and Selection In this analysis, jets are reconstructed with a cone
of R = 0.4 without taking into account calorimeter towers which are associated to any
tight isolated electron. The jet energy is corrected up to level 5, i.e for the n—dependence
of the calorimeter response, for multiple pp interactions, and absolute energy scale (i.e.
up to the underlying particle jet). Candidate jets, required to have detector |n| < 2.8,
must have corrected Er > 20 GeV to be called tight jets, whereas loose jets must have
corrected Er between 12 GeV and 20 GeV. Detector 7 is defined as the pseudorapidity of
the jet calculated with respect to the origin of the coordinate system, which is located in
the center of the detector. Only events with exactly two or three tight jets are accepted,
whereby at exactly one or two of the jets must be tagged as a b—quark jet by requiring a
displaced secondary vertex within the jet.

Missing Transverse Energy The missing Fr (ﬁT) is defined by
by ==Y Epi, (1)

where i denotes the calorimeter tower number with |n| < 3.6, 7; is a unit vector perpendic-
ular to the beam axis which points at the i calorimeter tower. Additionally, £y = |Fr|

is defined. Because this calculation is based on calorimeter towers, fr has to be adjusted
for the effect of the jet corrections for all tight and loose jets.

Since muons pass the calorimeters without showering, i.e. as minimum ionizing parti-
cle, a correction is applied by adding all transverse momenta of the traversing muons to
the sum and by removing the average ionization energy. The corrected Fr is required to
be greater than 25 GeV.

Rejection of QCD multi—jet background To further suppress events in which no
real W boson is produced, additional cuts are applied. The cuts are based on the assump-
tion that these events do not produce £ by nature but due to lost or mismeasured jets.
Therefore, one would expect small £r , small fp significance sig» @ small transverse
W-boson mass Mr y, and small values of the angle A¢ET,jet between F1 and a jet. The
Fr significance is defined as

Er
\/Zjets C?ES COS2 (A¢E'T7jet) _I_ COS2 (A¢El;ncorr Ecorr)

s T

ET sig =

(2)

with the level 5 jet—correction factor Cjgg and the azimuthal angle A¢ Fneer o between
T s =T

uncorrected and corrected . The transverse W-boson mass is given by

Mrw = \/QPTZET —pr - Er (3)

with pr’ being the transverse momentum of the charged lepton.
Events passing the electron trigger must have My > 20 GeV. For central elec-
trons, it is additionally required that Fr sig > —0.05M7 w + 3.5. In the 2— and 3-jet bin,
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Fr g, >25— 2'5‘A¢EijCt2|/0'8 must be fulfilled, with the azimuthal angle A%T be-

,jet2
tween [p and the second leading jet. In the 1-jet bin, fr gg > 76+ 3.2[Ady jet|/0.8
must be satisfied, with Agy jer being the azimuthal angle between the charged lepton
and the jet. The CEM QCD veto in the 2—jet bin is exemplarily illustrated in figure 4.
Forward electrons must have fr ;. > 2.0. Additionally, fr > 45 — 30|A¢ ﬁT,jetl must be

CEM combined MC CEM data CEM difference

2
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MET_.
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Figure 4: Illustration of the CEM QCD veto in the 2—jet bin. The distribution of Fr sig
versus Mr w is shown in the pretag sample. On the left hand side, the distribution of the
W +jets sample is shown. The plot in the middle shows the distribution of pretag data.
On the right hand side, the difference between the other two distributions is shown. The
line represents the cut fr sig > —0.05M7 w + 3.5. This cut rejects events which are not
modeled by the W+jets sample.

fulfilled for the two leading jets in each event.

In muon events, the transverse W-boson mass must fulfill My > 10 GeV. In the 1-
jet bin, events containing CMUP muons are additionally required to have Fr > 60| A¢y jet|—
145.

Z—Boson Veto To remove Z—boson events, events are rejected in which the charged
lepton can be paired with any more loosely defined jet or lepton to form an invariant mass
consistent with the Z peak, defined as the range from 76 GeV/c? to 106 GeV /%



3 Functionality of NeuroBayes®

NeuroBayes® combines a three-layer feed-forward neural network with a complex robust
preprocessing. This preprocessing is performed before the input variables are fed to
the neural network. The neural network uses Bayesian regularization techniques for the
training process. The network infrastructure consists of one input node for each input
variable plus one bias node, an arbitrary number of hidden nodes, and one output node
which gives a continuous output in the interval [—1, 1].

The nodes of two consecutive layers are catenated with variable connections. For each
node j, a biased weighted sum of the values of the previous layer x; is calculated

a;(x) =Y wijzi + po, (4)

and passed to the transfer function which gives the output of the node. The bias 11 ; im-
plements the threshold of node j. The output of each node is determined by a transformed

sigmoid function
2

1+ ea®)
which gives an output of —1 for background and +1 for signal. As can be seen in figure
5, the sigmoid function is only sensitive to a relatively small range around zero. By
this transformation, the interval [—oo, +0c| is mapped to the interval [—1, +1]. For very
large (r — o0) or very small (r — —o0) values, a saturation effect is reached. The
bias mentioned above shifts the mean of the sum of the weighted input data distribution
>, wijz; to the linear part of the sigmoid function.

S(x) —1 (5)

S(a(x))

5. - .10
a(x)

Figure 5: The transformed sigmoid activation function S(a(x)) as given by equation 5.

The output of the neural network for the output node is calculated by

0= S(Z wj S(Z Wi T + M07j)) (6)



where d is the number of input nodes and M the number of hidden nodes. w;; denotes
the weights from the input to the hidden layer, w; the weights from the hidden layer to
the output node. pi9; is the weight that connects the bias node with the hidden nodes.

3.1 The Training Process

The training of a neural network is done by minimizing the deviation between the true
output and the one calculated by using the actual weights. The error function minimized
in this neural network is the entropy error function

Bp = Y logls - (14T - 0r +e), (7

where the target value T; is a binary number to classify event ¢ as signal or background, o;
represents the output as given by equation (6). € is a small regularization constant which
is introduced in order to avoid numerical problems at the beginning of the training. This
constant is reduced in each training iteration and is zero after just a few iterations.

The aim of the training of a neural network is to find the minimum in the multidi-
mensional structure of the error function which may exhibit many peaks and valleys. As
this task can be difficult to solve, the training process is done by the combined method
of backpropagation and gradient descent, i.e. the change of each weight Aw;; is adjusted
proportional to the current gradient of the error function Aw;; = —n%. The step width
71 is adapted individually for each weight during the training. Since the target value is not
known for hidden nodes, the error induced by the current weights has to be propagated
backwards from the output node by applying the chain rule for partial derivatives.

The neural network is trained with regularization techniques to improve generalization
performance and to avoid overtraining. During the training process, the weights are
systematically reduced in addition to the variation calculated by the gradient descent
procedure. Thus, only recurring structures are intensified while the influence of statistical
fluctuations is reduced by so—called weight decay. Connections (and even nodes) that
have become completely insignificant are pruned away. This reduces the number of free
parameters and hence improves the signal-to—noise ratio by removing the cause of the
noise, leading to an improved generalization ability. For details of the above mentioned
features see references [?, ?].

3.2 Preprocessing of the Variables

To find the optimal starting point for minimizing the error function, the input variables
are preprocessed. This preprocessing is done in a completely automatic way. Equalizing
the input variables and scaling them to be distributed between —1 and 1 before passing
the variables to the neural network reduces the influence of extreme outliers. Those
flattened distributions are then converted into Gaussian distributions, centered at zero
with standard deviation one. At the beginning of the training, this avoids saturation of
the nodes due to the above mentioned shape of the activation function (see figure 5) and
assures that also the inputs to the next layers are distributed with mean zero and width
one. To decorrelate the preprocessed input variables, at first, their covariance matrix is

10



calculated. Diagonalizing the covariance matrix using Jacobi rotations [?] and dividing
the rotated input vectors by the square root of the corresponding eigenvalue transforms
the covariance matrix into a unit matrix.

The above mentioned transformation to a Gaussian distribution may be altered by
individual variable preprocessing like fitting a spline curve to the flattened distribution.
In addition, discrete variables can be treated as members of classes. The preprocessing of
those kinds of variables can also deal with a certain order of values, e.g. the number of
tracks in a jet. The preprocessing is also able to deal with variables that are only given
for a subset of events by assigning the missing values to a d function.

3.3 Automatic Variable Selection

The significances of the training variables are determined automatically during the pre-
processing in NeuroBayes®.

The correlation matrix of all preprocessed input variables is calculated including the
correlation of all variables to the target. One variable after the other is omitted to deter-
mine the loss of total correlation to the target caused by its removal. The variable with
the smallest loss of correlation is discarded leading to an (n — 1)-dimensional correlation
matrix. The same procedure is repeated with the reduced correlation matrix to find the
least important of the (n — 1) remaining variables.

The significance of each variable is calculated by dividing the loss of correlation induced
by its removal at the relevant point of the successive procedure by the square root of the
sample size, i.e those significances are relative numbers in terms of the reduced correlation
matrices.

After the preprocessing process, it is possible to cut on the significance of the variables
to incorporate only those that include relevant information that is not already incorpo-
rated by other variables. The number of discarded variables is determined by scanning the
sorted list, starting with the least relevant one, until the first quantity has a significance
larger than the required minimum value.

3.4 Training Result

As already mentioned above, the network output of signal events piles up at +1, while
background events accumulate at outputs around —1. This is illustrated in figure 6(a).
After minimizing the entropy error function (7), the output, rescaled to the interval [0, 1],
can be interpreted as Bayesian a posterior: probability, if the a priori probability is correct,
i.e. if a realistic mixture of signal and background has been chosen. Hence, the quality of
the training can be checked by plotting the signal purity for each output bin, as illustrated
in figure 6(b). If the network is well trained, all the points should lie on the diagonal.
For a detailed discussion of the output interpretation, see reference [?].

4 Data Modeling and Event Yield

Using multivariate methods, it is crucial to model the observed data correctly. Therefore,
the complete spectrum of expected processes contributing to the considered W+jets bins

11
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Figure 6: Illustration of the training result. Figure (a) shows the output distributions for
signal and background events. Figure (b) shows the signal purity of each output bin and
illustrates the expected linear dependence.

has to be modeled. Most of the processes are described using Monte Carlo simulation,
while some background processes are derived from data.

4.1 Signal MC

Several authors pointed out [?, 7] that the leading order contribution to single top-quark
production via t—channel, as modeled in leading order parton shower Monte Carlo pro-
grams, does not adequately represent the measured final states.

The leading order process is a 2 — 2 process with a b quark in the initial state as
given by figure 3(a): b4+ u — d+t or b+ d — @+ t. For antitop-quark production,
the charge conjugate processes are implied. The initial-state b—quark being part of the
quark sea is described by a b—quark PDF for the calculation. Since the b quark originally
stems from a gluon splitting into a bb pair, a b quark has to be present in the event.
Leading order parton shower programs create this b quark through backward evolution
following the DGLAP scheme [?, 7, ?]. Thereby, only the soft regime of the transverse
momentum distribution of the b quark is modeled well, while the high-pr tail is not
estimated adequately. Also, the pseudorapidity spectrum expands too far into the forward
region.

One can improve the modeling of single top—quark production via t—channel by pro-
ducing two samples of simulated events with matrix element generators and applying
a parton shower Monte Carlo program to the final-state partons. In this analysis, the
matrix element generator MADEVENT, interfaced to the CTEQSL [?] parameterization of
the parton distribution functions (PDF), was used to produce simulated events. Parton
showering and hadronization were performed using PYTHIA.

The first sample is the 2 — 2 process b + ¢ — ¢’ + ¢ given by the Feynman graph
in figure 3(a); the second process is a 2 — 3 process with a gluon in the initial state,
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Figure 7: Matching of single-top—quark events produced by the 2 — 2 and the 2 — 3
t—channel processes. The pp distributions of the 2" b quark in the event are shown.
The ratio of 2 — 2 to 2 — 3 events is adjusted such that the rate of 2°¢ b quarks with
pr > 20GeV/c and |n| < 2.8 matches the NLO prediction. The fraction of these events
is illustrated by the shaded area.

g+q — ¢ +1t+b, which is shown in figure 3(b). In the second process, the b quark, called
27 quark in the following, is produced directly in the hard scattering described by the
matrix element. This sample describes the most important next—to-leading order (NLO)
contribution to t—channel production and is therefore suitable to describe the high—pr tail
of the pr distribution of the 2°4 b quark.

However, the two samples, the 2 — 2 process and the 2 — 3 process, have to be
matched to form one unified sample of simulated events. This has been realized by a
procedure of adjusting the ratio between the 2 — 2 and 2 — 3 processes in such a way
that the rate of events with a detectable 2 b-quark jet, that is pr > 20GeV/c and
In| < 2.8, matches the prediction made by zTOP [?], a program which operates at NLO
in perturbation theory. The matched t—channel sample is created in such a manner that
the pr distribution of 2"! b-quarks in the matched t-channel sample consists of 2 — 2
events for transverse momenta below a certain cutoff and of 2 — 3 events for transverse
momenta above the cutoff. This cutoff and hence the ratio between the two processes are
varied until the rate of detectable 2" b-quark jets matches the prediction [?]. The final
ratio is found to be R = 2.1, the cutoff is derived to be Kt = 20GeV /¢, as displayed
in figure 7. As a result, all detectable 2% b quarks (pr > 20GeV/c) in the matched
t-channel sample are provided by the 2 — 3 process. The 2°-b-quark pp spectrum in
the matched ¢—channel sample is much harder than the one provided by the 2 — 2 process
alone.

More details on the t—channel matching procedure and the comparison to ZTOP can
be found in reference [?7].
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4.2 Modeling of backgrounds

For the modeling of t¢, diboson, simulated events generated with PYTHIA are used, while
the W-+heavy flavor and Z+heavy flavor backgrounds were simulated using a combination
of ALPGEN and PYTHIA. For the samples produced with ALPGEN, it is important that the
heavy flavor overlap is removed. In this analysis, this is done by the jet—based procedure.

The QCD background is modeled using two different approaches [?]. The central
electron and muon models are obtained from central electron trigger data. The events are
required to pass all kinematic electron cuts but to fail two of the five non-kinematic cuts®.
Even though their kinematic properties resemble those of W-like events, those events are
QCD-enriched, since the non—kinematic criteria serve primarily to filter out QCD—induced
multijet events. For the forward electron sample, such a model is not yet available. For
this reason, an additional QCD model is introduced, based on the idea that for a QCD
event to pass the selection criteria, a jet has to resemble an electron. Hence, events from
jet trigger data are required to have a jet with Er > 20 GeV, 0.05 < Fyap/Frm < 0.2,
and at least four reconstructed tracks. The latter makes it unlikely that the event contains
a real electron. Once a jet is identified as a fake electron, its charge is assigned randomly,
and it is further considered as a tight forward electron.

The event candidates of both approaches have to pass all but the lepton selection
criteria and the b—tag requirement to contribute to the corresponding QCD model. Since
demanding a tagged jet would cause too low statistics, the b tag in the event has to
be faked using taggable? jets. If, in a given event, only one jet is taggable, this one
is considered to be the tagged jet. If there are more taggable jets in the event, one of
those jets is randomly assigned to be tagged. In doing so, each taggable jet has the same
probability to be selected.

Due to the usage of the neural-network b-tagger described in reference [?], it is addi-
tionally necessary to assign a hypothesis of what kind of quark flavor the jet is, b, ¢, or
light—quark flavor. The probability that a specific quark flavor is assigned to a certain jet
is given by the expected flavor composition of the QCD background. This composition is
estimated by applying the neural-network b-tagger to the i < 15 GeV sideband of the
observed data. In this sideband sample, a flavor composition of 45% b—quark jets, 40%
c—quark jets, and 15% light—quark jets is found [?].

In order to describe events with mistagged light—quark jets, W-light flavor and
Z+light flavor events simulated with ALPGEN and showered with PYTHIA are used. Due
to the very small fraction of tagged events in this sample, a large amount of this kind of
events would be needed in simulation. Thus, the pretag sample is utilized where taggable
jets are assigned to be tagged. If an event has more than one taggable jet, the probability
that a specific jet is selected as the tagged one is given by the ratios of the mistag proba-
bilities. This probability is defined by the negative tag rate and the correction factor for
the mistag asymmetry. Additionally, each event is weighted by the mistag probability of
the jet considered as tagged.

For both QCD and mistag model, the output of the neural network b tagger is randomly
assigned to the jet attributed as tagged. For this purpose template output distributions

Q- Az, |Az|, Byap/Eem, Lshr, X?trip
2E}p > 10 GeV, |’I7| < 2.4, and Ny > 2.
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obtained from jets of simulated events corresponding to the respective quark flavor are
utilized.

For the W+jet and Z-+jet events produced by ALPGEN, it is important to take into
account that the same n—jet configuration can be generated starting from different (n—m)—
parton configurations, where the additional m partons are provided by the shower. Hence,
to avoid double—counting of certain parts of the phase space, this necessitates a matching
of the diverse parton configurations generated by the matrix element generator.

4.3 Expected Event Yield

The number of expected events, displayed in table 1, has been determined by using
“Method2 for You”.

Process Number of Events
2-jet—bin 3-jet—bin
1-tag—bin 2—-tag—bin 1-tag—bin 2—-tag—bin
tt dilepton 30.3 £4.3 81+1.3 23.8£+3.3 78+1.3
tt non—dilepton 62.8 £8.9 129+£2.0 177.3+248 478478
Wbb 366.5+110.4 47.3+14.7 104.1+314 164+5.1
Wee/We 340.34+104.9 43+15 87.04+268 2.240.8

Wqq Mistags 303.74+380 13403 875+11.1 09402
QCD multijets 5594224 15406 215486 0240.1

Diboson 50.8 £ 5.0 31+£03 160+£1.6 1.0£0.1
Z+jets 184+27  08+01 69410  05£0.1
t-channel 498473 14+£02 129+19  20=£0.3
s—channel 26.1£3.7 73+12 82411 25404
total prediction 1304.6 £220.2 86.8+16.6 54524657 81.3+10.7

| observation 1312 82 491 9% |

Table 1: Summary of predicted numbers of signal and background events in the selected
data sample. All systematic uncertainties are included (see section 6).

5 'Training of the Neural-Networks

In the search for single top—quark production, six different neural networks are trained in
the different jet and tag bins:

e 2 jets, 1 tag: t—channel for combined search, t—channel for separate search, and
s—channel for separate search

e 2 jets, 2 tags: s—channel for combined and separate search

e 3 jets, 1 tag: t—channel for combined and separate search
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Process | t—channel ‘ s—channel t—channel ‘ t—channel
2 jets; 1 b-tag ‘ 2 jets; 2 b-tags | 3 jets; 1 b-tag ‘ 3 jets; 2 b-tags
t—channel 50.0% 0.0% 50% 50%
s—channel 0.0% 50.0% 0.0% 0.0%
tt 5.1% 15.9% 22.0% 37.0%

Wbb 13.7% 27.2% 7.9% 11.2%
Wee/We 14.0% 3.2% 7.8% 1.8%
mistags 14.0% 0.0% 10.0% —
Diboson 2.4% 2.2% 1.6% —

Z+jets 0.8% 0.6% 0.7% —

Table 2: Composition of the training samples used to train the neural networks to dis-
criminate single-top—quark events for the combined search. The contributions of the
respective single-top—quark events is 50% of the complete training sample. The relative
fractions to the background category are given by table 1. The absolute fractions are
determined by the requirement that the contributions of all background processes sum up
to 50%.

e 3 jets, 2 tags: t—channel for combined and separate search

As introduced in section 3, the number of input nodes is given by the number of input
variables which will be discussed in section 5.2.2. The number of hidden nodes was chosen
to be 15.

5.1 Training Samples

For the training of the networks, it is necessary to arrange training samples consisting
of the relevant modeled physics processes, each with reasonable statistics. A natural
approach would be to select a mixture corresponding to the estimated composition of the
observed events. Since this is not practicable in case of the search for single top—quark
production, a different composition of the training samples has to be chosen.

The samples used to train the neural networks are composed in such a way that
the respective signal single-top—quark production—process contributes 50% to the total
number of events. The relative fractions of all considered background processes are given
by the respective number of expected events quoted in table 1. For the spararate search
one further needs rather good separation between s— and t—channel single top—quark
events. Therefore, the training of those networks are special is the way, that the s—channel
single top—quark sample is used as background sample for the training of the t—channel
network and vice versa. Since the expected events for single-top—quark production are
very low, we use five times the expected events for the mixture of the training composition.

A list of all used processes, modeled as described in section 4, as well as their contri-
butions to the training samples is given in table 2 for the combined search and in table 3
for the separate search.
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Process t—channel s—channel s—channel t—channel t—channel
2 jets 1 tag | 2 jets 1 tag | 2 jets 2 tags | 3 jets 1 tag | 3 jets 2 tags

t—channel 50.0% 9.6% 0.0% 50.0% 0.0%

s—channel 5.1% 50.0% 50.0% 0.0% 50.0%

tt 4.6% 4.1% 15.9% 22.0% 37.0%

Wbb 12.3% 11.1% 27.2% 7.9% 11.2%

Wee/We 12.6% 12.3% 3.2% 7.8% 1.8%
mistags 12.5% 11.3% 0.0% 10.0% —
Diboson 2.2% 1.9% 2.2% 1.6% —
Z+jets 0.7% 0.7% 0.6% 0.7% —

Table 3: Composition of the training samples used to train the neural networks to discrim-
inate single-top—quark events for the separate search. The contributions of the respective
single-top—quark events is 50% of the complete training sample. The relative fractions to
the background category are given by table 1. The absolute fractions are determined by
the requirement that the contributions of all background processes sum up to 50%.

5.2 Input Variables

Before the training, the input variables are preprocessed as discussed in section 3.2 and
the respective correlations to the target are determined, providing an ordered list of
input variables being presented in section 5.2.2. In this connection, only variables with a
significance larger than a certain threshold are utilized for the training.

For all neural-network trainings mentioned above, three categories of input variables
are used: some are directly measured in the detector, others are reconstructed out of mea-
sured properties, and a few are calculated by advanced algorithms like the neural-network
b-tagger described in reference [?]. Furthermore, some quantities need the knowledge
about the four—vector of the top quark whose reconstruction is described in section 5.2.1.

5.2.1 Top—Quark Reconstruction

For some of the variables, the reconstruction of the top quark is necessary. The top—quark
four-momentum is built out of the reconstructed W boson and a defined b—quark jet.
The first step in top—quark reconstruction is the selection of the b—quark jet. For the
t—channel networks, the tagged jet is taken as the b—quark jet from the top—quark decay.
For the s—channel neural networks, the jet with the largest product of the charge of the
tight lepton (Q);) and the jet pseudorapidity, (), -7, is assigned to belong to the top—quark

decay.
The second step is the reconstruction of the four-momentum of the W boson, being

built from the four-momenta of the measured tight lepton and the reconstructed neutrino.
For the reconstruction of the neutrino, the smallest |p?| solution is chosen.
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| Rank Variable Relative Significance (in o) |

1 My, 114
2 NN b-tag output (b from top) 86
3 Mjljg 74
4 Qe - iy 50
5 Mr g1, 29
6  cosO,1j) 27
7 By 19
8  cosO, W) 17
9  nw 16
10 My 10
11 Zjlj2(77jets) 7

12 prye 5

13 Hrp 5

14 cosOU,Wap 5

Table 4: Set of discriminating variables used for the training of the t-channel neural
network in the 2—jet bin with 1 b-tag. The quoted relative significances are determined
as described in section 3.3, i.e. calculated in terms of reduced matrices.

| Rank Variable Relative Significance (in o) |
1 NN b-tag output (b from top) 100
2 My 76
3 Hry 46
4 cosO(j,7) 36
5 cos O(lyy. s, W) 27
6  EY 23
7T Mrw 19
8  Mrup 15
9w 13
10 Mj1]2 9
11 Pty 8
12 cos ©(W, lvb) 6
13 cos O(W, Lub),.f.(top) 7
14 Qg s My 7
15 cos©*((, W) 7
16 cos©O(lep, beam) 7
17 U/ 6

Table 5: Set of discriminating variables used for the training of the s-channel neural
network in the 2-jet bin with 1 b-tag. The quoted relative significances are determined
as described in section 3.3, i.e. calculated in terms of reduced matrices.
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| Rank Variable Relative Significance (in o) |

1 My 142 34
2 MT,W 24
3 Mr o 18
4 cosO(j,7) 18
) My, 11
6 > (NN b-tag output) 8
8 Fr (level 5) 6
9 Mjljg 6
10 Bry, 5
11 Ne 3

Table 6: Set of discriminating variables used for the training of the s-channel neural
network in the 2—jet bin with 2 b-tags. The quoted relative significances are determined
as described in section 3.3, i.e. calculated in terms of reduced matrices.

‘ Rank Variable Relative Significance (in o) ‘
1 Qe - My 38
2 NN b-tag output (b from top) 35
3 Hy 25
4 Mj1j3 23
5 Moy 19
6 PTewbjj 17
7 M3 13
8 cos©O(L,17) 12
9 An(j1,52) 11
10 X (mjer) 7
11 Prg, 6
12 Mj1j2j3 7
13 ET,j2 + ET’jg 7
14 Bry, 6
15 MTj,jb 6
16 An(t,lj) 5
17 ET,jl + ET’jg 4
18 ET,jl + ET,jZ )

Table 7: Set of discriminating variables used for the training of the ¢-channel neural
network in the 3—jet bin with 1 b-tag. The quoted relative significances are determined
as described in section 3.3, i.e. calculated in terms of reduced matrices.
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| Rank Variable Relative Significance (in o) |

1 Qe - mij 25
2 My 11
3 DT, euvbjj 9
4 My 6
5 cos O(¢,17) 5
6 Zﬂp(ET,jetS) 0
7 7153 4
8 An(j2,43) 4
9 Er ond—b 4
10 Mg, 3
11 An(j1,52) 3
12 Epgs 2
13 centrality Zjljz(ET,jets)/§ 2
14 3 3
15 cosO(j,7) 3

Table 8: Set of discriminating variables used for the training of the ¢-channel neural
network in the 3—jet bin with 2 b-tags. The quoted relative significances are determined
as described in section 3.3, i.e. calculated in terms of reduced matrices.

5.2.2 Relevance of Input Variables

Many variables have initially been investigated for the training of the neural networks.
Since the relevance of the variables varies for the five trainings, each neural network
utilizes a different set of input variables passing the cut on the significance, quoted in
tables 4, 5, 6, and 7.

Some of the utilized variables are:

the reconstructed top—quark mass My,

the output of the neural-network b-tagger of the selected b—quark jet from the
top—quark decay

the product of the charge of the lepton and the pseudorapidity of the light—quark
jet Qe - mij

the invariant mass of the two most energetic jets M, o
the invariant mass of the three most energetic jets M, 953
the transverse mass of the reconstructed top quark My,
the pseudorapidity of the reconstructed W boson ny,

the transverse energy of the light—quark jet EZTJ
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e the cosine of the polar angle between the charged lepton in the W—boson rest—frame
and the direction of the W boson

e the transverse W -boson mass Mty as given by equation (3)

e the scalar sum of transverse energies Hy = Zjets Er + p5 + Fr where Zjets Er is
the sum of the transverse energies of the tight jets

e the transverse energy of the selected b-quark jet from the top—quark decay E%

e the transverse momentum of the combination of the reconstructed top quark and
all additional jets pr,,,,; and accordingly pry,,;

e the transverse energy of the jet with the smallest transverse energy in the 3—jet bin
Ep?

e the cosine of the polar angle between the reconstructed W boson in the top—quark
rest—frame and the direction of the top quark cos (W, t)

e the cosine of the polar angle between the reconstructed W boson and the direction
of the top quark cos ©(W, t)ap

e the transverse momentum of the reconstructed top quark pry,,
e the transverse momentum of the charged lepton pr°
e the pseudorapidity of the charged lepton 7,

e the cosine of the angle in the top—quark rest—frame between the tight lepton and
the beam axis cos ©(¢, beam)

e the cosine of the angle in the top—quark rest—frame between the tight lepton and
the light—quark jet cos O(¢,1j)

e the sum of the outputs of the neural-network b-tagger of all tagged jets ZjetS(NN
b-tag output)

The distributions of the input variables of the ¢t—channel network in the 2—jet bin with
1 b—tag for TLC and EMC leptons can be found in figures 8 to 12. The distributions of
the s—channel network in the 2—jet bin with 1 and 2 b-tag, the t—channel network in the
3—jet bin with 1 and 2 b-tag can be found in the appendix.
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Figure 8: The three most important input variables of the ¢—channel network in the 2—jet
bin with 1 b-tag for TLC (left) and EMC (right) leptons.
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Figure 9: The input variables four to six of the t—channel network in the 2—jet bin with
1 b-tag for TLC (left) and EMC (right) leptons.
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Figure 10: The input variables seven to nine of the t—channel network in the 2—jet bin
with 1 b-tag for TLC (left) and EMC (right) leptons.
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Figure 11: The input variables ten to twelfe of the t—channel network in the 2—jet bin
with 1 b-tag for TLC (left) and EMC (right) leptons.
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Figure 12: The input variables thirteen to fifteen of the ¢t—channel network in the 2—jet
bin with 1 b-tag for TLC (left) and EMC (right) leptons.
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5.2.3 Comparison between Observation and Simulation

Since the neural network is trained with simulated events, it is crucial to check if the
input variables are modeled correctly. Hence it is necessary to compare the shape of each
input variable in observed events with the shape obtained by modeled data embracing the
signal and background models described in section 4. For this comparison, each modeled
process is scaled in such a way that it contributes as many events to the compound model
as predicted by the estimated event yield quoted in table 1.

The comparisons of the distributions of the input variables of the t—channel network
in the 2-jet bin with 1 b-tag can be found in figures 13 to 17. The distributions of the
s—channel network in the 2—jet bin with 1 and 2 b-tag, the ¢—channel network in the 3—jet
bin with 1 and 2 b-tag can be found in the appendix.

The distributions of the s—channel network in the 2—jet bin with 1 and 2 b-tag, the
t—channel network in the 3—jet bin with 1 and 2 b-tag can be found in the appendix.
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Figure 14: Data—MC comparison of the input variables four to six of the t—channel network
in the 2—jet bin with 1 b-tag with 1 b—tag for TLC (left) and EMC (right) leptons.
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Figure 16: Data-MC comparison of the input variables ten to twelfe of the ¢—channel
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Figure 17: Data—MC comparison of the input variables thirteen to fifteen of the t—channel
network in the 2-jet bin with 1 b-tag with 1 b-tag for TLC (left) and EMC (right) leptons.
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5.3 Output Distributions and Templates

The training of a neural network results in one output variable continuously distributed
between —1 and 1. The output of the different neural networks is used to create templates
which are to be fitted to the output distribution of observed events.

5.3.1 Combined Search

For the combined search of t— and s—channel, the following networks are utilized: the out-
put of the networks trained to identify ¢—channel events are utilized in the 2—jet channel
with 1 b-tag and 3-jet channel with 1 and 2 b-tags, while the output of the s—channel
network is used in the 2—jet channel with 2 b-tags (figure 18 and 19). The output distri-
butions of both ¢— and s—channel events are combined into one single distribution, where
the ratio between the two processes is as predicted by the standard model. In the fit, all
considered channels are fitted simultaneously to determine the combined single—top cross
section.

33



TLC 2Jets 1Tag CDF Il Preliminary 2.7 fb'1 EMC 2Jets 1Tag CDF Il Preliminary 2.7 fb'1

§ 015-_ —tsfingletop § 0.1h —tsfingletop
§ - ng+WcE % § H - ng+WcE %
+ i —Wag = * —Waqg =
'E 0.1- — Diboson S 'E — Diboson S
g i — Z+jets = g r — Z+jets =
T 1 —QCD k5 i 0.05h —QCD g
0.05F g | g
L 2 2
1 05 0 05 1 1 05 0 05 1
NN Output NN Output
(a) (b)
TLC 2Jets 2Tag CDF Il Preliminary 2.7 o™ EMC 2Jets 2Tag CDF Il Preliminary 2.7 o™
c i c o.2F
o (@] b —
S odl g g I g
L = - = i 0.15p =
e[| qOHHE : B q H :
z b B = Z 0dF m i 3
0.05}- = < [ _glz— &
i — £ L = £
| 5 0.05[ | = J 5
= PR S SN SR SR ST N NN ST ST R SR N :r PR PR R S SR T T S S T N
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
NN Output NN Output
(c) (d)

Figure 18: The templates for the ¢t—channel neural network in the 2—jet channel with 1
b-tag (top) and the s—channel neural network in the 2—jet channel with 2 b-tags (bottom)
for TLC (left) and EMC (right) leptons. The output of ¢— and s—channel events are added
with a ratio corresponding to the standard—model prediction.
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Figure 19: The templates for the t—channel neural network in the 3—jet channel with 1 b
tag (top) and with 2 b-tags (bottom) for TLC (left) and EMC (right) leptons. The output
of t— and s—channel events are added with a ratio corresponding to the standard—model
prediction.

35



5.3.2 Separate Search

The templates of the separate search in the 2—jet bin with 1 b-tag are illustrated in
figures 20-23 showing the output of the s—channel neural network versus the output of
the t—channel neural network. For the final fit to data the 2D templates get unwinded bin
by bin to have 1D distributions. The final templates of the separate search in the 2—jet
bin with 1 and 2 b-tags and 3—jet bin with 1 and 2 b-tags, respectively are illustrated in
figure 24 and 25. In the fit, all considered bins are fitted simultaneously to determine the

t— and s—channel cross sections.
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Figure 20: The templates utilized in the separate search are illustrated. The output of
the s—channel network in dependence of the output of the t—channel network is shown for

t—channel and s—channel events for TLC (left) and EMC (right) leptons.
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Figure 21: The templates utilized in the separate search are illustrated. The output of
the s—channel network in dependence of the output of the ¢~channel network is shown for
Wbb + Wee events, tt events, and We events for TLC (left) and EMC (right) leptons.
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Figure 22: The templates utilized in the separate search are illustrated. The output of
the s—channel network in dependence of the output of the t—channel network is shown for
Wqq events, Z+jets events, and Diboson events for TLC (left) and EMC (right) leptons.
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Figure 23: The templates utilized in the separate search are illustrated. The output of
the s—channel network in dependence of the output of the t—channel network is shown for
QCD multijet events for TLC (left) and EMC (right) leptons.
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Figure 24: The templates for the separate search: the unwinded 2D NN output of the s—
and t—channel neural networks in the 2—jet bin with 1 b-tag (top) and the NN output of
the s—channel neural network in the 2—jet bin with 2 b-tags (bottom) for TLC (left) and
EMC (right) leptons.
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Figure 25: The templates for the separate search: the NN output of the t—channel neural
networks in the 3-jet bin with 1 b-tag (top) and the 3—jet bin with 2 b-tags (bottom) for
TLC (left) and EMC (right) leptons.
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6 Systematic Uncertainties

Uncertainties in the modeling of physics processes and detector effects cause systematic
uncertainties on the measurement results, affecting the rate of predicted signal and back-
ground events as well as the shape of the template histograms used in the fit to the
observed data distribution. It must be noted that some effects induce only rate uncer-
tainties, while some affect only the shape of the templates, even though most of them
impact both.

The following sources of systematic uncertainties are considered: the uncertainty on
the jet energy corrections, the uncertainty in modeling initial-state gluon radiation (ISR)
and final-state gluon radiation (FSR), the choice of the parameterization of the parton
distribution functions (PDF') used for the event simulation, the choice of the Monte Carlo
event generator, the uncertainty in the event detection efficiency, the uncertainty in mod-
eling the output of the neural-network b—tagger, the uncertainty in the factorization and
renormalization scale for the simulation of W-+heavy flavor processes, the modeling of
instrumental backgrounds, that is mistag events and non-W events, the uncertainty in
the luminosity determination, and the uncertainty on the modeling of the distributions
of ARj, ;,, ;2 in the 2 jet bin and 7,3 in the 3 jet bin in the pretag sample.

The impact of these sources of uncertainties is evaluated by altering the modeling of
the corresponding processes or effects within their uncertainties or by assigning a plausible
alternative model. As a result, relative changes of the event rates and shifted template
distributions are obtained. Rate uncertainties are only determined for single-top—quark
and tt events because the rates of the main backgrounds, W-+jets and QCD events, are
estimated based on the observed rate of events before b tagging or by a fit to the observed
missing transverse energy distribution, respectively.

For later usage in the template likelihood fit to the observed output distribution, all

shape uncertainties are smoothed using a 5 bin median filter. This means the content n;
of bin 7 is given by: median(n;_o,m;_1, M, Mis1, Niyo)-
As one can see from the formula this can only be done for all bins, but not for the first two
and last two bins. The median filter has the advantages to remove extrem outliers and
high frequency noise very efficiently, but doesn’t change already smooth distributions. In
figure 26 a comparison between the original and the smoothed ratio plots is shown.

The effect of the uncertainty on the jet energy scale (JES) corrections is quantified by
varying the corrections within their £1o0 uncertainties [?]. The corresponding alternative
template distributions are calculated for all signal and background processes and are
shown in figures 27 and 28.
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Figure 26: Comparison of the original (left) and smoothed (right) relative difference
between the shifted distribution and the default distribution.
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Figure 27: Shape systematics due the uncertainty on the jet energy scale (JES) correction
for single-top and . In the upper plot the default distribution is shown in comparison
to the shifted distributions. In the lower plot the relative difference between the shifted
distribution and the default is plotted, which is smoothed using a 5 bin median smoothing
procedure.
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Figure 28: Shape systematics due the uncertainty on the jet energy scale (JES) correction
for WbbW cec and We. In the upper plot the default distribution is shown in comparison
to the shifted distributions. In the lower plot the relative difference between the shifted
distribution and the default is plotted, which is smoothed using a 5 bin median smoothing

procedure.
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Figure 29: Shape systematics due the uncertainty on the jet energy scale (JES) correction
for mistags and diboson. In the upper plot the default distribution is shown in comparison
to the shifted distributions. In the lower plot the relative difference between the shifted
distribution and the default is plotted, which is smoothed using a 5 bin median smoothing

procedure.
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Figure 30: Shape systematics due the uncertainty on the jet energy scale (JES) correction
for Z+jets. In the upper plot the default distribution is shown in comparison to the shifted
distributions. In the lower plot the relative difference between the shifted distribution and
the default is plotted, which is smoothed using a 5 bin median smoothing procedure.
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The influence of initial-state and final-state gluon radiation is estimated by producing
samples of simulated events for which the simulation was altered to produce either less or
more gluon radiation compared to the standard setting [?]. Specifically, two parameters
controlling the parton shower in the PYTHIA program are varied: Aqcp and the scale
factor K to the transverse momentum scale of the showering. The different settings are
derived from studies of ISR in Drell-Yan events. Using these specific ISR and FSR samples
of simulated events, alternative template shapes are produced for single-top—quark and
tt events as illustrated in figures 31 and 32.
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Figure 31: Shape systematics due the uncertainty in the final state radiation for single-top
and tt. In the upper plot the default distribution is shown in comparison to the shifted
distributions. In the lower plot the relative difference between the shifted distribution
and the default is plotted, which is smoothed using a 5 bin median smoothing procedure.

The impact of the uncertainties on the PDF parameterization are studied by reweight-
ing single-top—quark and ¢f events with weights associated with the 20 pairs of CTEQ6M
eigenvectors. The rate uncertainty on the signal model which is based on the MADEVENT
event generator is determined by a comparison to differential cross sections computed
with the zTOP program. The modeling of tt events is studied by using simulated events
produced with the MC@QNLO program and showered by HERWIG as an alternative gen-
erator. The factorization and renormalization scale is varied in the simulation to derive
an additional set of altered template histograms for W+heavy flavor events. The default
W +jets Monte Carlo samples are generated with a dynamic scale y? = Q2. The influence
of the variation of Q% on the shape of the output distribution of Wbb events is illustrated
in figure 33.

The uncertainty in the event detection efficiency €., includes the uncertainties on the
trigger efficiency, on the lepton identification efficiency, and on the b-tagging efficiency
which is the dominating factor. Since no cut is applied on the output of the neural-network
b-tagger, the uncertainty associated with this quantity does not imply a rate uncertainty,
but only a shape uncertainty on the template distributions. Systematic effects are studied
by utilizing the correction function derived for the mistags. Therefore we consider two
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Figure 32: Shape systematics due the uncertainty in the final state radiation for single-top
and tt. In the upper plot the default distribution is shown in comparison to the shifted
distributions. In the lower plot the relative difference between the shifted distribution
and the default is plotted, which is smoothed using a 5 bin median smoothing procedure.

scenarios. The pessimistic one, in which we apply the correction function on the c-like
templates, that they get more signal like. And the optimistic one, in which we use the
uncorrected mistag shape, that the mistag template gets more background like.

The influence of these scenarios on the mistags and We templates is illustrated in
figure 34. A modified model of QCD events is considered to investigate the influence of
this aspect on the analysis. In comparison to the default model described in section 4,
the alternative model uses events selected from a generic jet sample where one of the
jets has a fraction of electromagnetic energy measured in the calorimeter of at least 0.8,
but less than 0.95. This so—called jet—electron assumes the role of the charged lepton in
the event. In addition, the flavor composition of the QCD sample is varied: the default
model assumes a composition of 45% b—quark jets, 40% c—quark jets, and 15% light—quark
jets, whereas the alternative model uses a composition of 60:30:10 [?], respectively. The
influence of the flavor composition on the nonW template is illustrated in figure 35. To
evaluate the systematic effect on the shapes of the distributions caused by the modeling
of mistagged light—quark jet events, an alternative model is utilized to create template
distributions. This is realized by replacing the default mistag model based on simulated
events as described in section 4 by a description on the basis of measured W+jets events
before b tagging. The influence of the mistag model is illustrated in figure 36. The
uncertainty on the modeling of the distributions of AR and 7;, in the pretag sample is
determined by reweighting the distributions. The influence of these reweightings are in
figures 37, 38, 39 and 40 shown. Tables 9-17 summarize the relative rate uncertainties
on the event prediction of the various Monte Carlo samples.

The analyses are done under the assumption of a top—quark mass of M; = 175 GeV /c?.
That is why the uncertainty in the top—quark mass is not taken into account as a system-
atic uncertainty. Hence, the analyses provide rather a measurement at the specified value
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Figure 33: Shape systematics due the uncertainty in the ALPGEN factoriza-
tion /renormalization scale Q2 for the Wb background. The upper plot shows the de-
fault distribution in comparison to the shifted distribution. In the lower plot the relative
difference between the shifted distribution and the default is plotted, which is smoothed
using a 5 bin median smoothing procedure.

of the top—quark mass. However, if the top—quark mass is varied in the simulation by
+5GeV/c?, the acceptance for single-top—quark events changes as shown in table 9-16.
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Figure 34: Shape systematics due the influence of the mistags correcetion function of the
KIT flavor separator on mistags and We. The upper plot shows the default distribution
in comparison to the shifted distribution. In the lower plot the relative difference between
the shifted distribution and the default is plotted, which is smoothed using a 5 bin median
smoothing procedure.
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Figure 35: Shape systematics due the influence of the nonW flavor composition. The
upper plot shows the default distribution in comparison to the shifted distribution. In
the lower plot the relative difference between the shifted distribution and the default is
plotted, which is smoothed using a 5 bin median smoothing procedure.

49



Wmistags CDF Il Preliminary 2.2 fb™
c [
(@] .
"8 0 15: —— Mistags s
A5 @
© R —— zero tag data o
LL L, S
c 0.1~ I
L=, =
0.05F .. z
F o
c

0.5
-1 -0.5 0 0.5 1

NN Output

Figure 36: Shape systematics due the influence of the mistag model. The upper plot
shows the default distribution in comparison to the shifted distribution. In the lower plot
the relative difference between the shifted distribution and the default is plotted, which

is smoothed using a 5 bin median smoothing procedure.

Source t-channel s-channel single-top tt

IFSR less/more 7.0/-1.5 % 6.2/7.1 % 6.7/14 % | -7.7/-9.7 %

PDF 3.1/-35% | 1.7/-14% | 26/28%| 19/-2.3%

MC 20/-20% | 1.0/-1.0% | 1.7/-17%| -27/27%

ot 12/-42% | 2.3/-23% | 3.6/-36% | 29/-2.9%

Luminosity 6.0/-6.0% | 6.0/-60%| 6.0/60%| 6.0/-6.0%

Cross section 12.6/-12.6 % | 12.4/-12.4 % | 12.6/-12.6 % | 12.4/-12.4 %

Moy 170,180 6.1/-53% | 95/80% | 7.3/62%| 7.8/-81%
Diboson Z+jets

v 76/ 76 % | 8.3/83%

Luminosity 6.0/-6.0 % 6.0/-6.0 %

Cross section 1.9/-1.9 % | 10.8/-10.8 %

Table 9: Systematic rate uncertainties for TLC lepton events with 2 jets and 1 b tag
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Figure 37: Shape systematics due the influence of the reweightings due to mismodeling in
AR between the first and the second jet for the single top, tf, WbbW cc and We templates.
The upper plots show the default distribution in comparison to the shifted distribution.
In the lower plot the relative difference between the shifted distribution and the default
is plotted, which is smoothed using a 5 bin median smoothing procedure.
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Figure 38: Shape systematics due the influence of the reweightings due to mismodeling in
AR between the first and the second jet for the mistag, diboson and Z+jets templates.
The upper plots show the default distribution in comparison to the shifted distribution.
In the lower plot the relative difference between the shifted distribution and the default
is plotted, which is smoothed using a 5 bin median smoothing procedure.
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Figure 39: Shape systematics due the influence of the reweightings due to mismodeling of
the 1 of the second jet for the single top, tt, WbbW cc and We templates. The upper plots
show the default distribution in comparison to the shifted distribution. In the lower plot
the relative difference between the shifted distribution and the default is plotted, which

normalized to unit area

normalized to unit area

W+2Jets 1Tag  CDF Il Preliminary 2.2 fb™

c
-g I —tt
5 I
S 004/ —,
L L 4
= +++++
4 4 e,
*
L ¥
O PR | 1 l Lo
O.SE
0 JE—
-0.5
-1 -0.5 0 0.5 1
NN Output
W+2Jets 1Tag  CDF Il Preliminary 2.2 fb™
c [
o 0.15_— — W
§ H* M2
L 0.1
c [ .
o I
> | -
L 0.05_' e,
O.SE
O ......... —rT
-0.5
-1 -0.5 0 0.5 1
NN Output

is smoothed using a 5 bin median smoothing procedure.
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Figure 40: Shape systematics due the influence of the reweightings due to mismodeling
of the n of the second jet between the first and the second jet for the mistag, diboson
and Z-+jets templates. The upper plots show the default distribution in comparison
to the shifted distribution. In the lower plot the relative difference between the shifted
distribution and the default is plotted, which is smoothed using a 5 bin median smoothing
procedure.
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Source t-channel s-channel single-top tt

IFSR less/more |  7.0/-1.5 % 6.2/7.1 % 6.7/1.6 % | -7.7/-9.7 %

PDF 3.1/-35% | 17/-14% | 26/-27%| 19/-2.3%

MC 2.0/20% | 1.0/-1.0% | 1.6/-1.6% | 2.7/-2.7 %

Cont 3.9/39% | 15/-15%| 3.0/30%| 2.6/-2.6%

Luminosity 6.0/-6.0% | 6.0/6.0% | 6.0/6.0% | 6.0/-6.0 %

Cross section 12.6/-12.6 % | 12.4/-12.4 % | 12.5/-12.5 % | 12.4/-12.4 %

My, 170/180 6.1/53% | 95/80%| 7.3/63%| 7.8/-81%
Diboson Z+jets

eort 72/ 72 % | 7.6/7.6 %

Luminosity 6.0/-6.0 % 6.0/-6.0 %

Cross section 1.9/-1.9 % | 10.8/-10.8 %

Table 10: Systematic rate uncertainties for EMC lepton events with 2 Jets and 1 b tags

Source t-channel s-channel single-top tt

IFSR less/more | -0.9/-13.4 % | 9.5/11.4 % 7.9/75 % | -7.5/-11.2 %

PDF 3.0/-33% | 17/-15%| 1.9/-1.7%| 19/23%

MC 2.0/-20% | 1.0/-1.0% | 1.2/12%| 4.6/-4.6%

ot 10.0/-10.0 % | 8.7/87% | 89/89% | 9.0/-9.0%

Luminosity 6.0/-6.0% | 6.0/6.0% | 6.0/6.0% | 6.0/-6.0 %

Cross section 12.6/-12.6 % | 12.4/-12.4 % | 12.5/-12.5 % | 12.4/-12.4 %

Miop 170180 25/T3% | 94/69% | T7.7/67%| 99/71%
Diboson Z+jets Mistags

o 0.8/-0.8 % | 10.6/-10.6 %

Luminosity 6.0/-6.0 % 6.0/-6.0 %

Double tag 22.0/-22.0%

Cross section 1.9/-1.9 % | 10.8/-10.8 %
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Table 11: Systematic rate uncertainties for TLC lepton events with 2 jets and 2 b tags




Source t-channel s-channel single-top tt

IFSR less/more | -1.0/-13.5 % | 9.4/11.4 % 8.0/82 % | -7.4/-11.1 %

PDF 3.0/-33% | 17/-15%| 1.9/-1.7%| 19/23%

MC 2.0/-20% | 1.0/-1.0% | 11/-11% | -4.6/4.6%

ot 10.0/-100 % | 87/87% | 89/89% | 89/-8.9%

Luminosity 6.0/-6.0% | 6.0/6.0%| 6.0/-6.0%| 6.0/-6.0%

Cross section | 12.6/-12.6 % | 12.4/-12.4 % | 12.4/-12.4 % | 12.4/-124 %

My, 170/180 25/73% | 94/69%| 85/-7.0%| 9.9/-7.1%
Diboson Z+jets Mistags

Cont 03/93% | 9.9/9.9%

Luminosity 6.0/-6.0 % 6.0/-6.0 %

double tag 22.0/-22.0 %

Cross section 3.2/-3.2 % | 10.8/-10.8 %

Table 12: Systematic rate uncertainties for EMC lepton events with 2 Jets and 2 b tags

Source t-channel s-channel single-top tt

IFSR less/more | -8.4/-3.1 % | -3.6/-174 % | -6.5/-8.6 % | -4.0/-6.7 %

PDF 3.2/37% | 18/-15%| 27/28%| 19/23%

MC 1.9/-1.9% | 1.5/-15% | L17/-17%| -17/1.7%

Covt 35/-35% | 23/23%| 3.0/-30%]| 23/23%

Luminosity 6.0/-6.0% | 6.0/6.0%| 6.0/-6.0%| 6.0/-6.0%

Cross section 12.6/-12.6 % | 12.4/-12.4 % | 12.6/-12.6 % | 12.4/-12.4 %

Mo, 170/180 6.2/-65% | 11.7/-86% | 6.4/-56% | 9.3/-84%
Diboson Z+jets

€evt 7.8/-7.8 % 7.8/-7.8 %

Luminosity 6.0/-6.0 % 6.0/-6.0 %

Cross section 1.9/-1.9 % | 10.8/-10.8 %
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Table 13: Systematic rate uncertainties for TLC lepton events with 3 jets and 1 b tag




Source t-channel s-channel single-top tt

IFSR less/more | -8.3/-3.1 % | -3.6/-174 % | -6.4/-9.0% | -4.1/-6.7%

PDF 3.2/37% | 17/-15%| 26/-28%| 1.9/-2.3%

MC 15/-15% | 1.9/1.9% | 1.7/1.7% | 27/27%

Cont 3.0/-30% | 15/-15%| 24/-24% | 2.5/-2.5%

Luminosity 6.0/-6.0% | 6.0/6.0% | 6.0/6.0% | 6.0/-6.0 %

Cross section 12.6/-12.6 % | 12.4/-12.4 % | 12.5/-12.5 % | 12.4/-12.4 %

My, 170/180 6.2/-65% | 11.7/-86% | 85/-74% | 9.3/-84%
Diboson Z+jets

vt 73/73% | 142/-11.2 %

Luminosity 6.0/-6.0 % 6.0/-6.0 %

Cross section 1.9/-1.9 % | 10.8/-10.8 %

Table 14: Systematic rate uncertainties for EMC lepton events with 3 Jets and 1 b tags

Source t-channel s-channel single-top tt

IFSR less/more | 22.7/4.4 % | -3.1/-16.2 % 82/-72% | -3.9/-93%

PDF 3.7/-41% | 18/-15% | 2.6/26% | 19/-2.3%

MC 1.9/-1.9% | 15/-15% | 1.7/1.7% | 2.0/-20%

Cont 9.1/-91% | 88/-88%| 89/89%| 9.1/-9.1%

Luminosity 6.0/-60% | 6.0/-60%| 6.0/-60%| 6.0/-6.0%

Cross section 12.6/-12.6 % | 12.4/-12.4 % | 12.5/-12.5 % | 12.4/-12.4 %

Mo, 170/180 7.8/-3.0 % | 9.1/-11.1 % 6.9/-6.0 % 9.3/-9.5 %
Diboson Z+jets Mistags

vt 10.8/-10.8% | 11.1/-11.1 %

Luminosity 6.0/-6.0 % 6.0/-6.0 %

Double tag 22.0/-22.0%

Cross section 1.9/-1.9 % | 10.8/-10.8 %
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Table 15: Systematic rate uncertainties for TLC lepton events with 3 jets and 2 b tags




Source t-channel s-channel single-top tt

IFSR less/more | 22.8/4.5 % | -3.1/-16.2 % 8.0/-7.3 % | -3.9/-9.3 %

PDF 3.7/-41% | 18/-15%| 26/26%| 19/-2.3%

MC 15/-1.5% | 1.9/1.9% | 1.7/1.7% | -2.0/2.0%

Cont 0.0/-9.0% | 88/-88% | 89/-89% | 9.1/-9.1%

Luminosity 6.0/-6.0% | 6.0/60% | 6.0/-60%| 6.0/-6.0%

Cross section 12.6/-12.6 % | 12.4/-12.4 % | 12.5/-12.5 % | 12.4/-12.4 %

Miop 170180 78/-3.0% | 9.1/11.1% | 85/-7.6% | 9.3/-9.5%
Diboson Z+jets Mistags

€ovt 11.5/-11.5 % | 10.8/-10.8 %

Luminosity 6.0/-6.0 % 6.0/-6.0 %

double tag 22.0/-22.0 %

Cross section 1.7/-1.7 % | 10.8/-10.8 %

Table 16: Systematic rate uncertainties for EMC lepton events with 3 Jets and 2 b tags

process 2jets 1tag | 2jets 2tags 3jets 1tag 3jets 2tags
t-ch -2.3/24 % | 1.9/-1.7 % | -10.1/12.7 % -3.9/5.8 %
s-ch -1.7/0.4 % | -1.3/0.4 % -9.8/8.6 % | -6.9/10.4 %
single-top | -2.1/1.7 % | -0.9/0.1 % | -10.0/11.0 % -5.6/8.4 %
tt 9.1/-89 % | 6.1/-6.4 % 3.8/-4.2 % 4.1/-4.5 %
Wee+Wbb | 5.5/-5.4 % | 7.0/-6.3 % | 6.4/-6.4 % | 10.4/-7.1%
We 5.7/-49 % | 6.9/-4.6 % | 0.3/-12.7 % | 10.1/-17.3 %
Z+jets -2.8/28 % | -2.8/2.8 % | -11.2/14.2 % | -10.0/13.1 %
Diboson -4.5/22 % | -4.5/2.3 % | -13.0/13.0 % | -13.0/13.0 %

Table 17: Systematic JES down/up rate uncertainties for EMC lepton events.
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7 Likelihood Function

Both combined and separate search use the same likelihood function for the template fit to
the observed events. This likelihood function consists of Poisson terms for the individual
bins of the fitted histogram, Gaussian constraints on the background rates, and Gaussian
constraints on the strengths of systematic effects:

B o—Hk S

.k ¢
L(ﬁb 760; 617 765) = H T{uk ’ H G(ﬁj> 1.0, AJ) ’ H G(éla 0.0, 10) : (8)
k=1 ' j=A i=1

Systematic uncertainties are included as factors modifying the expectation value py of
events in a certain bin k&, with

Mk:Z@.;}j~{Z(1+6i-6jz)} : ajk'{lJrZ(@"fjik)} ) (9)

=1
1 —(8; — 1.0)2
G(8;,1.0,A;) = ——— - exp (ﬂ— , and (10)
’ ’ ,/27TA? 2A?
((8;,0.0,1.0) L. (_53) (11)
i,0.0,1.0) = — - ex .
NoXs P\

The index j runs over the different event categories occurring in the likelihood function.

The predicted expectation values for the number of events of a certain event category
are denoted v;. The free parameters in the fit are given by §; = v;/;, i.e. the expectation
values over their prediction. The normalized content of bin k£ of the template histogram
for event category j is a;. The total number of bins is B.

In the fit, several effects causing systematic rate uncertainties are considered as given
by tables 9 — 17. In this notation, the sources of systematic uncertainties carry the
index 7. The variation in strength of a systematic effect 7 is measured with the variable d;
which constitutes an additional fit parameter and measures the strength of the systematic
effect in units of one standard deviation. The relative rate uncertainties due to these
sources are named €;;. As outlined in section 6, several sources of uncertainties influencing
the template shape are taken into account. In the template distributions, the shape
uncertainties are reflected by relative uncertainties in the bin content of bin k, being
denominated as k. The values of kj;, are calculated from the systematically shifted
normalized template histograms a;k and a;; according to

+ —
a, — Qs
jik Jik
g = Ik Stk (12)
2 Qi

By construction the x;;; satisfy the normalization condition

B
k=1
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The systematically shifted template taking into account the shifts caused by all systematic
effects with strengths {d;} is given by

S
i=1

Due to (13), the shifted histogram «; is properly normalized:

> al=1. (15)

B
k=1

Both normalized background rates [3;, where j runs over the background event cate-
gories, and the parameters ¢; describing the strengths of systematic excursions are con-
strained by Gaussian terms in the likelihood function, see (8): the background rates J; are
constrained within the relative uncertainties of the prediction, A; (see table 18, while the
strengths of the systematic effects ¢; are constrained to 0.0 with a standard deviation of
1.0. The single-top—quark content is measured by fitting the parameters of the likelihood
function, 3; and d;, to the observed data. This is achieved by minimizing the negative log-
arithm of the likelihood function (8) with respect to these parameters using the program
MINUIT [?]. In doing so, the normalized expectation values of single-top—quark events,
(1 for the combined search and (3; and (3, for the separate search, are allowed to assume
only values greater or equal than zero to avoid unphysical results.

Using this technique, one can compute the likelihood function of the combined search
as a function of §; only by minimizing the negative log-likelihood at a fixed value of
(1 with respect to all other variables (often called nuisance parameters). This method,
often named “profiling the likelihood function”, results in a one-dimensional function, the
reduced likelihood L,eq(01).

process A
t-ch 12.6 %
s-ch 12.4 %
single-top | 12.6 %
tt 12.4 %
Wbb+Wee | 30.0 %
We 30.0 %
Mistags 12.6 %
Z+jets 10.8 %
Diboson 1.9 %
QCD 40.0 %

Table 18: Gaussian constraints
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8 Ensemble Tests

8.1 Expected Sensitivity

To compute the sensitivity of both combined and separate search, ensemble tests are
used. In this context, an ensemble test consists of a set of pseudo experiments. For each
pseudo experiment, first the number of events N; of each event category is determined
by drawing a random number from a Poisson distribution of a mean ;. As a result, the
pseudo experiment features a total number of " N; events.

In a second step, /N; random numbers are drawn from the template distributions of
the neural network output for all considered event categories displayed figure 18- 19 for
the combined search and figures 20— 23, and 24— 25 for the separate search, respectively.
Those random numbers are filled in a histogram which constitutes the neural network
output distribution of a particular pseudo experiment. For the combined search, two
ensemble tests are performed: one with single-top—quark events included at the predicted
standard-model rate and one without any single-top—quark events.

8.2 Expected Significance

To compute the significance of a potentially observed signal, a hypothesis test is per-
formed, considering two hypotheses. The first one, the null hypothesis Hj, assumes that
the single-top—quark cross section is zero (5, = 0 for the combined search; §; = 2 = 0
for the separate search). The second one, Hy, assumes that the single-top—quark produc-
tion cross—section is the one predicted by the standard model (3; = 1 for the combined
search; 3; = B, = 1 for the separate search). The objective of both analyses is to observe
single-top—quark events, that means to reject the null hypothesis Hy. The hypothesis test
for the combined neural network search is based on the ()—value,

Q=—-2(InLwa(B1 =1) —In Liea (1 = 0)) , (16)

where Lyeq(1 = 1) is the value of the reduced likelihood function at the standard-model
prediction and L..q(; = 0) is the value of the reduced likelihood function for a single—
top—quark cross section of zero. Using the two ensemble tests, the respective ()—value
distributions are determined. The resulting distributions are shown in figure 41 for the
combined search.

In order to quantify the probability for Hy to be correct, the p—value is defined. As-
suming that the value )y is observed in a particular experiment, the p—value is given
by

1 Qo ) )
p(Qo) = 7 q(Q') dQ", (17)
q — 00
where g is the distribution of ()—values for the null hypothesis H, and
+00
I =/ 0(Q") dQ'" . (18)

To quantify the sensitivity of the analysis, the expected p-value p = p(@l) is defined,
where (); is the median of the ()—value distribution ¢; for the hypothesis H;. The mean-
ing of p is the following: Under the assumption that H; is correct one expects to observe
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Figure 41: Distributions of ()—values for two ensemble tests, one with single-top—quark
events present at the expected standard-model rate, one without any single-top—quark
events for the combined search.

p < p with a probability of 50%. For the combined search, p = 0.00000018 is found,
which corresponds to an expected significance of 5.10. The value includes all rate and
shape systematics. The found p—value can be interpreted as follows: assuming the pre-
dicted single-top—quark production cross—section, the expectation is, with a probability
of 50%, to see at least that many single-top—quark events that the observed excess over
the background corresponds to a background fluctuation of 5.1¢ in case of the combined
search.

9 Application to Observed Events

After the expected sensitivity has been determined, the neural networks are applied to
observed events. At first, the output distributions of observed events are compared to the
expected distributions. Finally, the templates are fitted to the observed distributions to
determine the single-top—quark cross sections.

9.1 Comparison to Expectation

Due to the shapes of the template distributions, the bins with the highest output values
are the most interesting ones: here, the ratio of signal to background events should be
the largest. The predicted and measured output distribution of all 8 channels used in
the combined search are depicted in figure ??. In figure 44 the distributions of all four
neural networks are added together.
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Figure 42: The predicted and measured distributions of the combined search for the
t—channel neural network in the 2—jet bin with 1 b-tag (top) and the s—channel neural
network in the 2-jet bin with 2 b-tags (bottom) for TLC (left) and EMC (right) leptons.
The output of t— and s—channel events is added with a ratio corresponding to the standard-—
model prediction.
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Figure 43: The predicted and measured distributions of the combined search for the ¢—
channel neural network in the 3—jet bin with 1 b-tag (top) and in the 3—jet bin with 2
b-tags (bottom) for TLC (left) and EMC (right) leptons. The output of t— and s—channel
events is added with a ratio corresponding to the standard-model prediction.
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Figure 44: The predicted and measured distributions of all 8 channels used in the com-
bined search. The output of - and s—channel events is added with a ratio corresponding
to the standard-model prediction.
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9.2 Fit Results
9.2.1 Combined Search

The likelihood fit to the neural network output for the combined search yields a cross
section for single top quark production of 2.17)fpb. The observed @Q-value is -27.2,
yielding an observed p—value of 0.00006790 corresponding to an observed significance of
3.80. Figure 45, comparing the observed ()—value with the expectation.
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Figure 45: Comparison of observed ()—value to the expectation in the combined search.
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9.2.2 Separate Search

For the separate search, the fit yields the cross sections o, = 0.77)¢(stat. + syst.) pb for
t—channel and o, = 2. 1+07(stat + syst.) pb for s—channel, respectively. The fit result
is depicted in figure 46 showing the difference between the logarithm of the reduced
likelihood function and its minimum in the plane of single-top—quark s—channel versus
t—channel cross sections. Negative cross section values are physically meaningless and
therefore not allowed. The minimum represents the best fit values and is indicated by the
black dot. The error bars quote the 1o, 20, and 30 uncertainties (Aln(L) of 0.50, 2.0, and
4.5) on the fitted ¢ and s—channel cross sections. The true values of both cross sections
have a probability of 68.3%, 95.5%, and 99.7% to be found in the region comprised by
the corresponding contours (Aln(L) of 1.15, 3.09, and 5.92). The value predicted by the
standard model, within its uncertainties, is illustrated by the blue rectangle.
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Figure 46: Logarithmic likelihood function of the separate neural network search. The

1, 2, and 3 standard deviation error bars for the one-dimensional and contours for the
two—-dimensional uncertainties are overlaid.
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A Input Variables

A.1 Variables for the 2jet 2tag bin neural network
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Event Fraction Event Fraction

Event Fraction

TLC 2Jets 2Tag CDF Il Preliminary 2.7 fb ™

—single top
i t
0.4l _w2b+ch
- — Waqgq
— Diboson
Z+jets
I —QCD
0.2+
L |_
0 50 100 150
M. (W) [GeV/c]
]’LC 2Jets 2Tag CDF Il Preliminary 2.7 fb'1
0.15} |
0.1
| -
0.05} [~ |:I=|:_': =
QlllILO.SIIIIOIIIIO.S""l
Cos(ej,j)top r.f.
TLC 2Jets 2Tag CDF Il Preliminary 2.7 fb ™
0-==

1 2
KIT flavor sep. (j1+j2)

single top s-channel requiering 2 jets and 2 tags for TLC leptons.

69

normalized to unit area normalized to unit area

normalized to unit area



EMC 2Jets 2Tag CDF Il Preliminary 2.7 fh™ EMC 2Jets 2Tag CDF Il Preliminary 2.7 fh™

E | 5 —tsfingletop
g 0.3 g § - _WSEWcE $
T |: I o4 S
= 3 § e I — Diboson §
E’ 0'2__ = é Z+ets £
m [ g i —QcD 8
- asmEpT BE 0.2 — o
0.1-— — = g - I — g
E ’—@_ _L ——E g B | g
00 200 300 %OO 0 50 100 159
Mlvj1j2 [GeVicT] M. (W) [GeV/cT]
EMC 2Jets 2Tag CDF Il Preliminary 2.7 fb'l EMC 2Jets 2Tag CDF Il Preliminary 2.7 fb'1
S s |
g ) g § 0%
I mEE i
S | g = 0.15:— ;
i —| =3 & o4 - ’_l_r | 3
“T | | = :
— = C ] —— =
: I g 0.05_ — | >_‘ ‘ 8
gO 100 150 200 250 -1 -0.5 0 0.5 1
M. (Ivb) [GeV/c?] COS(8 o .
EMC 2Jets 2Tag CDF Il Preliminary 2.7 fh™ 0 3EMC 2Jets 2Tag CDF Il Preliminary 2.7 fh™
c [ c .
S 0.3 0 i
° - s O ©
o] 3 ¢ © o
L = I gL =
qc_) 02_— — ; g ;
> - kel > il
S § Z
0.1k — g 0.0 g
foo""lso""zoo""zsg R R | R 2
M, [GeV/cT] KIT flavor sep. (j1+j2)

Figure 48: Shape comparision for input variables used in the neural network trained for
single top s-channel requiering 2 jets and 2 tags for EMC leptons.
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Figure 49: Shape comparision for input variables used in the neural network trained for
single top s-channel requiering 2 jets and 2 tags for TLC leptons.
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Figure 50: Shape comparision for input variables used in the neural network trained for
single top s-channel requiering 2 jets and 2 tags for EMC leptons.
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Figure 51: Data MC comparison for input variables used in the neural network trained
for single top s-channel requiering 2 jets and 2 tags for TLC leptons.
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Figure 52: Data MC comparison for input variables used in the neural network trained
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Figure 53: Data MC comparison for input variables used in the neural network trained
for single top s-channel requiering 2 jets and 2 tags for TLC leptons.
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Figure 54: Data MC comparison for input variables used in the neural network trained
for single top s-channel requiering 2 jets and 2 tags for EMC leptons.
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A.2 Variables for the 3jet 1tag bin neural network
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Figure 55: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 1 tag for TLC leptons.
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Figure 56: Shape comparision for input variables used in the t-channel neural network
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Figure 57: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 1 tag for TLC leptons.
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Figure 58: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 1 tag for EMC leptons.
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Figure 59: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 1 tag for TLC leptons.
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Figure 60: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 1 tag for EMC leptons.
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Figure 61: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 1 tag for TLC leptons.
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Figure 62: Shape comparision for input variables used in the t-channel neural network

requiering 3 jets and 1 tag for EMC leptons.
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Figure 63: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 1 tag for TLC leptons.
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Figure 64: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 1 tag for EMC leptons.
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Figure 65: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 1 tag for TLC leptons.
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Figure 66: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 1 tag for EMC leptons.
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A.3 Variables for the 3jet 2tag bin neural network
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Figure 67: Shape comparision for input variables used in the t-channel neural network
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Figure 68: Shape comparision for input variables used in the t-channel neural network
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Figure 69: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 2 tags for TLC leptons.
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Figure 70: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 2 tags for EMC leptons.
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Figure 71: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 2 tags for TLC leptons.
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Figure 72: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 2 tags for EMC leptons.
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Figure 73: Shape comparision for input variables used in the t-channel neural network
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Figure 74: Shape comparision for input variables used in the t-channel neural network
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Figure 75: Shape comparision for input variables used in the t-channel neural network

requiering 3 jets and 2 tags for TLC leptons.
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Figure 76: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 2 tags for EMC leptons.
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Figure 77: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 2 tags for TLC leptons.
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Figure 78: Shape comparision for input variables used in the t-channel neural network
requiering 3 jets and 2 tags for EMC leptons.
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